Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mode-group multiplexing (MGM) can increase the capacity of short-reach few-mode optical fiber communication links while avoiding complex digital signal processing. In this paper, we present the design and experimental demonstration of a novel mode-group demultiplexer (MG DeMux) using Fabry-Perot (FP) thin-film filters (TFFs). The MG DeMux supports low-crosstalk mode-group demultiplexing, with degeneracies commensurate with those of graded-index (GRIN) multimode fibers. We experimentally demonstrate this functionality by using a commercial six-cavity TFF that was intended for 100 GHz channel spaced wavelength-division multiplexing (WDM) system.more » « less
-
We propose a Hermite–Gaussian (HG) mode-demulti-plexing hybrid (MDH) for coherent detection of mode-division multiplexed signals. The MDH, which performs multiple functionalities, including demultiplexing, local oscillator splitting, and optical 90-deg mixing, is realized based on the multi-plane light conversion technique. An isosceles right triangle output layout is employed to reduce the number of phase masks to fewer than the number of modes, significantly simplifying the construction of the MDH. A 10-Hermite–Gaussian (HG) mode MDH with only five phase masks is demonstrated by numerical simulation, achieving an insertion loss (IL) and mode dependent loss as low as and 1.7 dB, respectively. The IL was further reduced to through optimization of MDH parameters, such as the beam waists of the input HG modes and the output spots.more » « less
An official website of the United States government
